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ABSTRACT The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since
spread around the world and infected hundreds of millions of people with coronavirus
disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its
similarity to other coronaviruses that infect humans has allowed for rapid insight into the
mechanisms that it uses to infect human hosts, as well as the ways in which the human
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immune system can respond. Here, we contextualize SARS-CoV-2 among other coronavi-
ruses and identify what is known and what can be inferred about its behavior once inside
a human host. Because the genomic content of coronaviruses, which specifies the virus’s
structure, is highly conserved, early genomic analysis provided a significant head start in
predicting viral pathogenesis and in understanding potential differences among variants.
The pathogenesis of the virus offers insights into symptomatology, transmission, and
individual susceptibility. Additionally, prior research into interactions between the human
immune system and coronaviruses has identified how these viruses can evade the immune
system’s protective mechanisms. We also explore systems-level research into the regulatory
and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding
the structure and behavior of the virus serves to contextualize the many facets of the
COVID-19 pandemic and can influence efforts to control the virus and treat the disease.

IMPORTANCE COVID-19 involves a number of organ systems and can present with a
wide range of symptoms. From how the virus infects cells to how it spreads between peo-
ple, the available research suggests that these patterns are very similar to those seen in the
closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related
CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextual-
izes how the different biological systems affected by COVID-19 connect. Exploring the struc-
ture, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of
the broader impacts of the virus on the human body and on human populations. For this
reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of
SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).

KEYWORDS COVID-19, genomics, review, viral pathogenesis

The current coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe
acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) virus, represents an

acute global health crisis. Symptoms of the disease can range from mild to severe or
fatal (1) and can affect a variety of organs and systems (2). Outcomes of infection can
include acute respiratory distress syndrome (ARDS) and acute lung injury, as well as
damage to other organ systems (2, 3). Understanding the progression of the disease,
including these diverse symptoms, depends on understanding how the virus interacts
with the host. Additionally, the fundamental biology of the virus can provide insights into
how it is transmitted among people, which can, in turn, inform efforts to control its spread.
As a result, a thorough understanding of the pathogenesis of SARS-CoV-2 is a critical foun-
dation on which to build an understanding of COVID-19 and the pandemic as a whole.

The rapid identification and release of the genomic sequence of the virus in January 2020
(4) provided early insight into the virus in a comparative genomic context. The viral genomic
sequence clusters with known coronaviruses (order Nidovirales, family Coronaviridae, subfamily
Orthocoronavirinae). Phylogenetic analysis of the coronaviruses reveals four major subclades,
each corresponding to a genus: the alpha, beta, gamma, and delta coronaviruses. Among
them, alpha and beta coronaviruses infect mammalian species, gamma coronaviruses infect
avian species, and delta coronaviruses infect both mammalian and avian species (5). The novel
virus now known as SARS-CoV-2 was identified as a beta coronavirus belonging to the B line-
age based on phylogenetic analysis of a PCR amplicon fragment from five patients along with
the full genomic sequence (6). This lineage also includes the Severe acute respiratory syndrome-
related coronavirus (SARS-CoV-1) that caused the 2002–2003 outbreak of severe acute respira-
tory syndrome (SARS) in humans (6). (Note that these subclades are not to be confused with
variants of concern [VOC] within SARS-CoV-2 labeled with Greek letters; i.e., the Delta variant
of SARS-CoV-2 is still a beta coronavirus).

Because viral structure and mechanisms of pathogenicity are highly conserved within the
order, this phylogenetic analysis provided a basis for forming hypotheses about how the virus
interacts with hosts, including which tissues, organs, and systems would be most susceptible to
SARS-CoV-2 infection. Coronaviruses that infect humans (HCoVs) are not common, but prior
research into other HCoVs such as SARS-CoV-1 and Middle East respiratory syndrome-related
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coronavirus (MERS-CoV), as well as other viruses infecting humans such as a variety of influenza
virus species, established a strong foundation that accelerated the pace of SARS-CoV-2 research.

Coronaviruses are large viruses that can be identified by their distinctive “crown-like”
shape (Fig. 1). Their spherical virions are made from lipid envelopes ranging from 100 to 160
nm in which peplomers (protruding structures) of two to three spike (S) glycoproteins are
anchored, creating the crown (7, 8). These spikes, which are critical both to viral pathogene-
sis and to the response by the host immune system, have been visualized using cryo-elec-
tron microscopy (9). Because they induce the human immune response, they are also the
target of many proposed therapeutic agents (10, 11). Viral pathogenesis is typically broken
down into three major components: entry, replication, and spread (12). However, in order to
draw a more complete picture of pathogenesis, it is also necessary to examine how infection
manifests clinically, identify systems-level interactions between the virus and the human
body, and consider the possible effects of variation or evolutionary change on pathogenesis
and virulence. Thus, clinical medicine and traditional biology are both important pieces of
the puzzle of SARS-CoV-2 presentation and pathogenesis.

CORONAVIRUS STRUCTURE AND PATHOGENESIS
Structure of coronaviruses. Genome structure is highly conserved among corona-

viruses, meaning that the relationship between the SARS-CoV-2 genome and its pathogenesis
can be inferred from prior research in related viral species. The genomes of viruses in the
Nidovirales order share several fundamental characteristics. They are nonsegmented, which
means the viral genome is a single continuous strand of RNA, and are enveloped, which
means that the genome and capsid are encased by a lipid bilayer. Coronaviruses have large
positive-sense RNA (ssRNA1) genomes ranging from 27 to 32 kb in length (13, 14). The SARS-
CoV-2 genome lies in the middle of this range at 29,903 bp (14). Genome organization is
highly conserved within the order (13). There are three major genomic regions: one containing
the replicase gene, one containing the genes encoding structural proteins, and interspersed
accessory genes (13) (Fig. 1). The replicase gene comprises about two-thirds of the genome
and consists of two open reading frames that are translated with ribosomal frameshifting (13).

FIG 1 Structure of SARS-CoV-2 capsid and genome. (A) The genomic structure of coronaviruses is
highly conserved and includes three main regions. Open reading frames (ORFs) 1a and 1b contain
two polyproteins that encode the nonstructural proteins (nsp). The nsp include enzymes such as
RNA-dependent RNA polymerase (RdRp). The last third of the genome encodes structural proteins,
including the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Accessory genes
can also be interspersed throughout the genome (13). (B) The physical structure of the coronavirus
virion, including the components determined by the conserved structural proteins S, E, M, and N.
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This polypeptide is then translated into 16 nonstructural proteins (nsp), except in gamma coro-
naviruses where nsp1 is absent, which form the replication machinery used to synthesize viral
RNA (15). The remaining third of the genome encodes structural proteins, including the spike
(S), membrane, envelope, and nucleocapsid proteins. Additional accessory genes are some-
times present between these two regions, depending on the species or strain. Much attention
has been focused on the S protein, which is a critical structure involved in cell entry.

Pathogenic mechanisms of coronaviruses. While it is possible that SARS-CoV-1
and SARS-CoV-2, like most viruses, enter cells through endocytosis, a process conserved
among coronaviruses enables them to target cells for entry through fusion with the plasma
membrane (16, 17). Cell entry proceeds in three steps: binding, cleavage, and fusion. First, the
viral spike protein binds to a host cell via a recognized receptor or entry point. Coronaviruses
can bind to a range of host receptors (18, 19), with binding conserved only at the genus level
(5). Viruses in the beta coronavirus genus, to which SARS-CoV-2 belongs, are known to bind to
the CEACAM1 protein, 5-N-acetyl-9-O-acetyl neuraminic acid, and to angiotensin-converting
enzyme 2 (ACE2) (18). This recognition is driven by domains in the S1 subunit (20). SARS-CoV-
2 has a high affinity for human ACE2, which is expressed in the vascular epithelium, other epi-
thelial cells, and cardiovascular and renal tissues (21, 22), as well as many others (23). The bind-
ing process is guided by the molecular structure of the spike protein, which is structured in
three segments: an ectodomain, a transmembrane anchor, and an intracellular tail (24). The
ectodomain forms the crown-like structures on the viral membrane and contains two subdo-
mains known as the S1 and S2 subunits (25). The S1 (N-terminal) domain forms the head of
the crown and contains the receptor binding motif, and the S2 (C-terminal) domain forms the
stalk that supports the head (25). The S1 subunit guides the binding of the virus to the host
cell, and the S2 subunit guides the fusion process (24).

After the binding of the S1 subunit to an entry point, the spike protein of coronaviruses is
often cleaved at the S1/S2 boundary into the S1 and S2 subunits by a host protease (20, 26,
27). This proteolytic priming is important because it prepares the S protein for fusion (26, 27).
The two subunits remain bound by van der Waals forces, with the S1 subunit stabilizing the
S2 subunit throughout the membrane fusion process (20). Cleavage at a second site within S2
(S29) activates S for fusion by inducing conformational changes (20). Similar to SARS-CoV-1,
SARS-CoV-2 exhibits redundancy in which host proteases can cleave the S protein (28). Both
transmembrane protease serine protease-2 (TMPRSS-2) and cathepsins B/L have been shown
to mediate SARS-CoV-2 S protein proteolytic priming, and small-molecule inhibition of these
enzymes fully inhibited viral entry in vitro (28, 29). Other proteases known to cleave the S1/S2
boundary in coronaviruses include TMPRSS-4, trypsin, furin, cathepsins, and human airway
trypsin-like protease (HAT) (29).

Unlike in SARS-CoV-1, a second cleavage site featuring a furin-like binding motif is
also present near the S1/S2 boundary in SARS-CoV-2 (30). This site is found in HCoVs
belonging to the A and C lineages of beta coronavirus, including MERS-CoV, but not in
the other known members of the B lineage of beta coronavirus that contains SARS-CoV-1 and
SARS-CoV-2 (30). It is associated with increased virulence in other viral species (30) and may
facilitate membrane fusion of SARS-CoV-2 in the absence of other proteases that prime the
S1/S2 site (31). However, given that proteases such as HAT are likely to be present in targets
like the human airway, the extent to which this site has had a real-world effect on the spread
of SARS-CoV-2 was initially unclear (31). Subsequent research has supported this site as an im-
portant contributor to pathogenesis: in vitro analyses have reported that it bolsters pathoge-
nicity specifically in cell lines derived from human airway cells (Calu3 cell line) (32–34) and that
furin inhibitors reduced pathogenic effects in VeroE6 cells (35).

Electron microscopy suggests that in some coronaviruses, including SARS-CoV-1
and MERS-CoV, a six-helix bundle separates the two subunits in the postfusion confor-
mation, and the unusual length of this bundle facilitates membrane fusion through the
release of additional energy (5). The viral membrane can then fuse with the endosomal
membrane to release the viral genome into the host cytoplasm. Once the virus enters
a host cell, the replicase gene is translated and assembled into the viral replicase com-
plex. This complex then synthesizes the double-stranded RNA (dsRNA) genome from
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the genomic ssRNA(1). The dsRNA genome is transcribed and replicated to create viral
mRNAs and new ssRNA(1) genomes (13, 36). From there, the virus can spread into other cells.
In SARS-CoV-2, the insertion of the furin-like binding site near the S1/S2 boundary is also
thought to increase cell-cell adhesion, making it possible for the viral genome to spread
directly from cell to cell rather than needing to propagate the virion itself (37). In this way, the
genome of SARS-CoV-2 provides insight into the pathogenic behavior of the virus.

Evidence also suggests that SARS-CoV-2 may take advantage of the specific struc-
ture of endothelial cells to enter the circulatory system. Endothelial cells are specialized
epithelial cells (38) that form a barrier between the bloodstream and surrounding tis-
sues. The endothelium facilitates nutrient, oxygen, and cellular exchange between the
blood and vascularized tissues (39). The luminal (interior) surface of the endothelium is
lined with glycocalyx, a network of both membrane-bound and soluble proteins and
carbohydrates, primarily proteoglycans and glycoproteins (40, 41). The glycocalyx
varies in thickness from 0.5 mm in the capillaries to 4.5 mm in the carotid arteries and
forms a meshwork that localizes both endothelium- and plasma-derived signals to the
inner vessel wall (40). Heparan sulfate is the dominant proteoglycan in the glycocalyx,
representing 50 to 90% of glycocalyx proteoglycan content (42). The SARS-CoV-2 spike
protein can bind directly to heparan sulfate, which serves in part as a scaffolding mole-
cule to facilitate ACE2 binding and entry into endothelial cells (41). A heparan sulfate
binding site has also been identified near the ACE2 binding site on the viral receptor
binding domain (RBD), and modeling has suggested that heparan sulfate binding
yields an open conformation that facilitates binding to ACE2 on the cell surface (41).
Degrading or removing heparan sulfate was associated with decreased binding (41).
Heparan sulfate may also interact with the S1/S2 proteolytic cleavage site and other
binding sites to promote binding affinity (43). Notably, treatment with soluble heparan
sulfate or even heparin (a commonly used anticoagulant and vasodilator that is similar
in structure to heparan sulfate [44]) potently blocked spike protein binding and viral
infection (41). This finding is particularly interesting because degradation of heparan
sulfate in the glycocalyx has previously been identified as an important contributor to
ARDS and sepsis (45), two common and severe outcomes of COVID-19, and suggests
that heparan sulfate could be a target for pharmaceutical inhibition of cell entry by
SARS-CoV-2 (46–50). Together, this evidence suggests that heparan sulfate can serve
as an important adhesion molecule for SARS-CoV-2 cell entry. It may represent a thera-
peutic target but has not been pursued as much as other candidate targets (10).

Immune evasion strategies. Research in other HCoVs provides some indication of
how SARS-CoV-2 infection can proceed despite human immune defenses. Infecting the
epithelium can help viruses such as SARS-CoV-1 bypass the physical barriers, such as
mucus, that comprise the immune system’s first line of defense (51). Once the virus
infiltrates host cells, it is adept at evading detection. CD1631 and CD681 macrophage
cells are especially crucial for the establishment of SARS-CoV-1 in the body (51). These
cells most likely serve as viral reservoirs that help shield SARS-CoV-1 from the innate
immune response. According to a study on the viral dissemination of SARS-CoV-1 in
Chinese macaques, viral RNA could be detected in some monocytes throughout the process
of differentiation into dendritic cells (51). This lack of active viral replication allows SARS-
CoV-1 to escape the innate immune response because reduced levels of detectable viral
RNA allow the virus to avoid both natural killer cells and Toll-like receptors (51). Even during
replication, SARS-CoV-1 is able to mask its dsRNA genome from detection by the immune
system. Although dsRNA is a pathogen-associated molecular pattern that would typically ini-
tiate a response from the innate immune system (52), in vitro analysis of nidoviruses includ-
ing SARS-CoV-1 suggests that these viruses can induce the development of double-mem-
brane vesicles that protect the dsRNA signature from being detected by the host immune
system (53). This protective envelope can therefore insulate these coronaviruses from the
innate immune system’s detection mechanism (54).

HCoVs are also known to interfere with the host immune response, rather than just
evade it. For example, the virulence of SARS-CoV-2 is increased by nsp1, which can
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suppress host gene expression by stalling mRNA translation and inducing endonucleolytic
cleavage and mRNA degradation (55). SARS-CoV-1 also evades the immune response by
interfering with type I interferon (IFN) induction signaling, which is a mechanism that leads
to cellular resistance to viral infections. SARS-CoV-1 employs methods such as ubiquitination
and degradation of RNA sensor adaptor molecules MAVS and TRAF3/6 (56). Also, MERS-CoV
downregulates antigen presentation via major histocompatibility complex (MHC) class I and
MHC class II, which leads to a reduction in T cell activation (56). These evasion mechanisms,
in turn, may facilitate systemic infection. Coronaviruses such as SARS-CoV-1 are also able to
evade the humoral immune response through other mechanisms, such as inhibiting certain
cytokine pathways or downregulating antigen presentation by the cells (53).

Host cell susceptibility. ACE2 and TMPRSS-2 have been identified as the primary
entry portal and as a critical protease, respectively, in facilitating the entry of SARS-CoV-1
and SARS-CoV-2 into a target cell (9, 28, 57–59). This finding has led to a hypothesized role
for the expression of these molecules in determining which cells, tissues, and organs are
most susceptible to SARS-CoV-2 infection. ACE2 is expressed in numerous organs, such as
the heart, kidney, and intestine, but it is most prominently expressed in alveolar epithelial
cells; this pattern of expression is expected to contribute to the virus’ association with lung
pathology (21, 60, 61) as well as that of SARS (62). A retrospective observational study
reported indirect evidence that certain antineoplastic therapies, such as the chemotherapy
drug gemcitabine, may reduce risk of SARS-CoV-2 infection in patients with cancer, possibly
via decreased ACE2 expression (63). Additionally, the addition of the furin site insertion at
the S1/S2 boundary means that SARS-CoV-2 does not require TMPRSS-2 when furin, a
ubiquitously expressed endoprotease (64), is present, enabling cell-cell fusion independent
of TMPRSS-2 availability (65).

Clinical investigations of COVID-19 patients have detected SARS-CoV-2 transcripts in
bronchoalveolar lavage fluid (BALF) (93% of specimens), sputum (72%), nasal swabs (63%),
fibrobronchoscopy brush biopsy specimens (46%), pharyngeal swabs (32%), feces (29%),
and blood (1%) (66). Two studies reported that SARS-CoV-2 could not be detected in urine
specimens (66, 67); however, a third study identified four urine samples (out of 58) that
were positive for SARS-CoV-2 nucleic acids (68). Although respiratory failure remains the
leading cause of death for COVID-19 patients (69), SARS-CoV-2 infection can damage many
other organ systems including the heart (70), kidneys (71, 72), liver (73), and gastrointestinal
tract (74, 75). As it becomes clear that SARS-CoV-2 infection can damage multiple organs,
the scientific community is pursuing multiple avenues of investigation in order to build a
consensus about how the virus affects the human body.

CLINICAL PRESENTATION OF COVID-19

SARS-CoV-2 pathogenesis is closely linked with the clinical presentation of the
COVID-19 disease. Reports have described diverse symptom profiles associated with COVID-
19, with a great deal of variability both within and between institutions and regions.
Definitions for nonsevere, severe, and critical COVID-19, along with treatment recommenda-
tions, are available from the World Health Organization living guidelines (76). A large study
from Wuhan, China, conducted early in the pandemic identified fever and cough as the two
most common symptoms that patients reported at hospital admission (77), while a retro-
spective study in China described the clinical presentations of patients infected with SARS-
CoV-2 as including lower respiratory tract infection with fever, dry cough, and dyspnea
(shortness of breath) (78). This study (78) noted that upper respiratory tract symptoms were
less common, suggesting that the virus preferentially targets cells located in the lower respi-
ratory tract. However, data from the New York City region (79, 80) showed variable rates of
fever as a presenting symptom, suggesting that symptoms may not be consistent across
individuals. For example, even within New York City, one study (79) identified low oxygen
saturation (,90% without the use of supplemental oxygen or ventilation support) in 20.4%
of patients upon presentation, with fever being present in 30.7%, while another study (80)
reported cough (79.4%), fever (77.1%), and dyspnea (56.5%) as the most common present-
ing symptoms; both of these studies considered only hospitalized patients. A later study

Rando et al.

September/October 2021 Volume 6 Issue 5 e00095-21 msystems.asm.org 6

https://msystems.asm.org


reported radiographic findings such as ground-glass opacity and bilateral patchy shadowing
in the lungs of many hospitalized patients, with most COVID-19 patients having lymphocy-
topenia, or low levels of lymphocytes (a type of white blood cell) (77). Patients may also ex-
perience loss of smell, myalgias (muscle aches), fatigue, or headache. Gastrointestinal symp-
toms can also present (81), and the CDC includes nausea and vomiting, as well as
congestion and runny nose, on its list of symptoms consistent with COVID-19 (1). An analysis
of an app-based survey of 500,000 individuals in the United States found that among those
tested for SARS-CoV-2, a loss of taste or smell, fever, and a cough were significant predictors
of a positive test result (82). It is important to note that in this study, the predictive value of
symptoms may be underestimated if they are not specific to COVID-19. This underestima-
tion could occur because the outcome measured was a positive, as opposed to a negative,
COVID-19 test result, meaning an association would be more easily identified for symptoms
that were primarily or exclusively found with COVID-19. At the time the surveys were con-
ducted, due to limits in U.S. testing infrastructure, respondents typically needed to have
some symptoms known to be specific to COVID-19 in order to qualify for testing. Widespread
testing of asymptomatic individuals may therefore provide additional insight into the range of
symptoms associated with COVID-19.

Consistent with the wide range of symptoms observed and the pathogenic mecha-
nisms described above, COVID-19 can affect a variety of systems within the body in
addition to causing respiratory problems (83). For example, COVID-19 can lead to acute
kidney injury, especially in patients with severe respiratory symptoms or certain preex-
isting conditions (84). Some patients are at risk for collapsing glomerulopathy (85).

COVID-19 can also cause neurological complications (86–88), potentially including
stroke, seizures, or meningitis (89, 90). One study on autopsy samples suggested that
SARS-CoV-2 may be able to enter the central nervous system via the neural-mucosal
interface (91). However, a study of 41 autopsied brains (92) found no evidence that the
virus can actually infect the central nervous system. Although there was viral RNA in
some brain samples, it was found in only very small amounts, and no viral protein was
found. The RNA may have been in the blood vessels or blood components and not in
the brain tissue itself. Instead, the neuropathological effects of COVID-19 are more
likely to be caused indirectly by hypoxia, coagulopathy, or inflammatory processes
rather than by infection in the brain (92). COVID-19 has been associated with an
increased incidence of large vessel stroke, particularly in patients under the age of 40
(93), and other thrombotic events including pulmonary embolism and deep vein
thrombosis (94). The mechanism behind these complications has been suggested to
be related to coagulopathy, with reports indicating the presence of antiphospholipid
antibodies (95) and elevated levels of D-dimer and fibrinogen degradation products in
deceased patients (96). Other viral infections have been associated with coagulation
defects and changes to the coagulation cascade; notably, SARS was also found to lead
to disseminated intravascular coagulation and was associated with both pulmonary
embolism and deep vein thrombosis (97). The mechanism behind these insults has
been suggested to be related to inflammation-induced increases in the von Willebrand
factor clotting protein, leading to a procoagulative state (97). Abnormal clotting
(thromboinflammation or coagulopathy) has been increasingly discussed recently as a
possible key mechanism in many cases of severe COVID-19 and may be associated
with the high D-dimer levels often observed in severe cases (98–100). This excessive
clotting in lung capillaries has been suggested to be related to a dysregulated activa-
tion of the complement system, part of the innate immune system (101, 102).

Finally, concerns have been raised about long-term sequelae of COVID-19. Some
COVID-19 patients have reported that various somatic symptoms (such as shortness of
breath, fatigue, and chest pain) and psychological symptoms (depression, anxiety, or
mild cognitive impairment) can last for months after infection (103). Such long-term
effects occur in both adults (104) and children (105). Sustained symptoms affecting a
variety of biological systems have been reported across many studies (e.g., references
103, 106, and 107). The phenomenon of “long COVID” is not fully understood, although
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various possible explanations have been proposed, including damage caused by
immune response to infection as well as by the infection itself, in addition to negative
consequences of the experience of lengthy illness and hospitalization. However, a lack
of consistency among definitions used in different studies makes it difficult to develop
precise definitions or identify specific symptoms associated with long-term effects of
COVID-19 (108, 109). Patient and family support groups for “long haulers” have been
formed online, and patient-driven efforts to collect data about postacute COVID-19
provide valuable sources of information (e.g., reference 106). The specific relationship
between viral pathogenesis and these reported sequelae remains to be uncovered,
however.

Pediatric presentation. The presentation of COVID-19 infection can vary greatly
among pediatric patients and, in some cases, manifests in distinct ways from COVID-19
in adults. Evidence suggests that children and adolescents tend to have mostly asymp-
tomatic infections and that those who are symptomatic typically exhibit mild illness
(110–113). One review examined symptoms reported in 17 studies of children infected
with COVID-19 during the early months of the COVID-19 epidemic in China and one
study from Singapore (114). In the more than a thousand cases described, the most
common reports were for mild symptoms such as fever, dry cough, fatigue, nasal congestion,
and/or runny nose, while three children were reported to be asymptomatic. Severe lower re-
spiratory infection was described in only one of the pediatric cases reviewed. Gastrointestinal
symptoms such as vomiting or diarrhea were occasionally reported. Radiologic findings were
not always reported in the case studies reviewed, but when they were mentioned, they
included bronchial thickening, ground-glass opacities, and/or inflammatory lesions (114).
Neurological symptoms have also been reported (115).

These analyses indicate that most pediatric cases of COVID-19 are not severe.
Indeed, it is estimated that less than 1% of pediatric cases result in critical illness (112, 116),
although reporting suggests that pediatric hospitalizations may be greater with the emer-
gence of the Delta variant of concern (VOC) (117–119). Serious complications and, in rela-
tively rare cases, deaths have occurred (120). Of particular interest, children have occasionally
experienced a serious inflammatory syndrome, multisystem inflammatory syndrome in chil-
dren (MIS-C), following COVID-19 infection (121). This syndrome is similar in some respects
to Kawasaki disease, including Kawasaki disease shock syndrome (122–124), and is thought
to be a distinct clinical manifestation of SARS-CoV-2 due to its distinct cytokine profile and
the presence of burr cells in peripheral blood smears (125, 126). MIS-C has been associated
with heart failure in some cases (127). A small number of case studies have identified pre-
sentations similar to MIS-C in adults associated with SARS-CoV-2 (128–131). However, not all
cases of severe COVID-19 in children are characterizable as MIS-C. A recent study (132)
described demographic and clinical variables associated with MIS-C in comparison with
non-MIS-C severe acute COVID-19 in young people in the United States. Efforts to character-
ize long-term sequelae of SARS-CoV-2 infection in children face the same challenges as in
adults, but long-term effects remain a concern in pediatric patients (105, 133, 134), although
some early studies have suggested that they may be less of a concern than in adults (135–
137). Research is ongoing into the differences between the pediatric and adult immune
responses to SARS-CoV-2, and future research may shed light on the factors that lead to
MIS-C; it is also unknown whether the relative advantages of children against severe COVID-
19 will remain in the face of current and future variants (138).

Cytokine release syndrome. The inflammatory response was identified early on as
a potential driver of COVID-19 outcomes due to existing research in SARS and emerging
research in COVID-19. While too low of an inflammatory response is a concern because it
will fail to eliminate the immune threat (139), excessive proinflammatory cytokine activity
can cascade (140) and cause cell damage, among other problems (141). A dysregulated
immune response can cause significant damage to the host (142–144), including pathoge-
nesis associated with sepsis. Sepsis, which can lead to multiorgan failure and death (145,
146), is traditionally associated with bacterial infections. However, sepsis associated with viral
infections may be underidentified (147), and sepsis has emerged as a major concern associ-
ated with SARS-CoV-2 infection (148). Hyperactivity of the proinflammatory response due to
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lung infection is commonly associated with acute lung injury and more rarely with the more
severe manifestation, ARDS, which can arise from pneumonia, SARS, and COVID-19 (140,
145). Damage to the capillary endothelium can cause leaks that disrupt the balance
between proinflammatory cytokines and their regulators (149), and heightened inflamma-
tion in the lungs can also serve as a source for systemic inflammation, or sepsis, and poten-
tially multiorgan failure (145). The shift from local to systemic inflammation is a phenom-
enon often referred to broadly as a cytokine storm (145) or, more precisely, as cytokine
release syndrome (150).

Cytokine dysregulation is therefore a significant concern in the context of COVID-
19. In addition to the known role of cytokines in ARDS and lung infection more
broadly, immunohistological analysis at autopsy of deceased SARS patients revealed
that ACE2-expressing cells that were infected by SARS-CoV-1 showed elevated expres-
sion of the cytokines interleukin-6 (IL-6), IL-1b , and tumor necrosis factor alpha (TNF-a)
(151). Similarly, the introduction of the S protein from SARS-CoV-1 to mouse macro-
phages was found to increase production of IL-6 and TNF-a (152). For SARS-CoV-2
infection leading to COVID-19, early reports described a cytokine storm syndrome-like
response in patients with particularly severe infections (60, 153, 154). Sepsis has been
identified as a major contributor to COVID-19-related death. Among patients hospital-
ized with COVID-19 in Wuhan, China, 112 out of 191 (59%) developed sepsis, including
all 54 of the nonsurvivors (78).

While IL-6 is sometimes used as a biomarker for cytokine storm activity in sepsis
(145), the relationship between cytokine profiles and the risks associated with sepsis
may be more complex. One study of patients with and at risk for ARDS, specifically
those who were intubated for medical ventilation, found that shortly after the onset of
ARDS, anti-inflammatory cytokine concentration in BALF increased relative to the con-
centration of proinflammatory cytokines (149). The results suggest that an increase in
proinflammatory cytokines such as IL-6 may signal the onset of ARDS, but recovery
depends on an increased anti-inflammatory response (149). However, patients with
severe ARDS were excluded from this study. Another analysis of over 1,400 pneumonia
patients in the United States reported that IL-6, tumor necrosis factor (TNF), and IL-10
were elevated at intake in patients who developed severe sepsis and/or ultimately
died (155). However, unlike the study analyzing pro- and anti-inflammatory cytokines
in ARDS patients (149), this study reported that unbalanced pro/anti-inflammatory
cytokine profiles were rare. This discrepancy could be related to the fact that the sepsis
study measured only three cytokines. Although IL-6 has traditionally been considered
proinflammatory, its pleiotropic effects via both classical and trans signaling allow it to
play an integral role in both the inflammatory and anti-inflammatory responses (156),
leading it to be associated with both healthy and pathological responses to viral threat
(157). While the cytokine levels observed in COVID-19 patients fall outside the normal
range, they are not as high as typically found in patients with ARDS (158). Regardless
of variation in the anti-inflammatory response, prior work has therefore made it clear
that pulmonary infection and injury are associated with systemic inflammation and
with sepsis. Inflammation has received significant interest in regard to both the pathol-
ogy of COVID-19 as well as potential avenues for treatment, as the relationship
between the cytokine storm and the pathophysiology of COVID-19 has led to the sug-
gestion that a number of immunomodulatory pharmaceutical interventions could hold
therapeutic value for the treatment of COVID-19 (10, 159).

INSIGHTS FROM SYSTEMS BIOLOGY

Systems biology provides a cross-disciplinary analytical paradigm through which
the host response to an infection can be analyzed. This field integrates the “omics” fields
(genomics, transcriptomics, proteomics, metabolomics, etc.) using bioinformatics and other
computational approaches. Over the last decade, systems biology approaches have been
used widely to study the pathogenesis of diverse types of life-threatening acute and chronic
infectious diseases (160). Omics-based studies have also provided meaningful information
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regarding host immune responses and surrogate protein markers in several viral, bacterial,
and protozoan infections (161). Though the complex pathogenesis and clinical manifesta-
tions of SARS-CoV-2 infection are not yet fully understood, omics technologies offer the op-
portunity for discovery-driven analysis of biological changes associated with SARS-CoV-2
infection.

Transcriptomics. Through transcriptomic analysis, the effect of a viral infection on
gene expression can be assessed. Transcriptomic analyses, whether in vivo or in situ,
can potentially reveal insights into viral pathogenesis by elucidating the host response
to the virus. For example, infection by some viruses, including by the coronaviruses
SARS-CoV-2, SARS-CoV-1, and MERS-CoV, is associated with the upregulation of ACE2
in human embryonic kidney cells and human airway epithelial cells (60). This finding
suggests that SARS-CoV-2 facilitates the positive regulation of its own transmission
between host cells (60). The host immune response also likely plays a key role in medi-
ating infection-associated pathologies. Therefore, transcriptomics is one critical tool for
characterizing the host response in order to gain insight into viral pathogenesis. For this rea-
son, the application of omics technologies to the process of characterizing the host response
is expected to provide novel insights into how hosts respond to SARS-CoV-2 infection and
how these changes might influence COVID-19 outcomes.

Several studies have examined the cellular response to SARS-CoV-2 in vitro in comparison
to other viruses. One study (162) compared the transcriptional responses of three human
cell lines to SARS-CoV-2 and to other respiratory viruses, including MERS-CoV, SARS-CoV-1,
Human parainfluenza virus 3, Respiratory syncytial virus, and Influenza A virus. The transcrip-
tional response differed between the SARS-CoV-1-infected cells and the cells infected by
other viruses, with changes in differential expression specific to each infection type. Where
SARS-CoV-2 was able to replicate efficiently, differential expression analysis revealed that the
transcriptional response was significantly different from the response to all of the other
viruses tested. A unique proinflammatory cytokine signature associated with SARS-CoV-2
was present in cells exposed to both high and low doses of the virus, with the cytokines IL-6
and IL1RA uniquely elevated in response to SARS-CoV-2 relative to other viruses. However,
one cell line showed significant IFN-I or IFN-III expression when exposed to high, but not
low, doses of SARS-CoV-2, suggesting that IFN induction is dependent on the extent of ex-
posure. These results suggest that SARS-CoV-2 induces a limited antiviral state with low IFN-I
or IFN-III expression and a moderate IFN-stimulated gene response, in contrast to other
viruses. Other respiratory viruses have been found to encode antagonists to the IFN
response (163, 164), including SARS-CoV-1 (165) and MERS-CoV (166).

The analysis of SARS-CoV-2 suggested that this transcriptional state was specific to
cells expressing ACE2, as it was not observed in cells lacking expression of this protein
except with ACE2 supplementation and at a very high (10-fold increase) level of SARS-
CoV-2 exposure (162). In another study, direct stimulation with inflammatory cytokines such
as type I interferons (e.g., IFN-b) was also associated with the upregulation of ACE2 in
human bronchial epithelial cells, with treated groups showing 4-fold-higher ACE2 expression
than control groups at 18 h posttreatment (167). This hypothesis was further supported by
studies showing that several nsp in SARS-CoV-2 suppress interferon activity (168) and that
the SARS-CoV-2 ORF3b gene suppresses IFNB1 promoter activity (IFN-I induction) more effi-
ciently than the SARS-CoV-1 ORF3b gene (169). Taken together, these findings suggest that
a unique cytokine profile is associated with the response to the SARS-CoV-2 virus and that
this response differs depending on the magnitude of exposure.

Susceptibility and IFN induction may also vary by cell type. Using poly(A) bulk transcrip-
tome sequencing (RNA-seq) to analyze dynamic transcriptional responses to SARS-CoV-2
and SARS-CoV-1 revealed negligible susceptibility of cells from the H1299 line (,0.08 viral
read percentage of total reads) compared to those from the Caco-2 and Calu-3 lines (.10%
of viral reads) (170). This finding suggests that the risk of infection varies among cell types
and that cell type could influence which hosts are more or less susceptible. Based on visual
inspection of microscopy images alongside transcriptional profiling, the authors also showed
distinct responses among the host cell lines evaluated (170). In contrast to Caco-2, Calu-3
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cells infected with SARS-CoV-2 showed signs of impaired growth and cell death at 24 h post-
infection, as well as moderate IFN induction with a strong upregulation of IFN-stimulated
genes. Interestingly, the results were similar to those reported in Calu-3 cells exposed to
much higher levels of SARS-CoV-2 (162), as described above. This finding suggests that IFN
induction in Calu-3 cells is not dependent on the level of exposure, in contrast to A549-
ACE2 cells. The discrepancy could be explained by the observations that Calu-3 cells are
highly susceptible to SARS-CoV-2 and show rapid viral replication (29), whereas A549 cells
are incompatible with SARS-CoV-2 infection (171). This discrepancy raises the concern that
in vitro models may vary in their similarity to the human response, underscoring the impor-
tance of follow-up studies in additional models.

As a result, transcriptional analysis of patient tissue is an important application of
omics technology to understanding COVID-19. Several studies have collected blood
samples from COVID-19 patients and analyzed them using RNA-seq (172–177). Analyzing
gene expression in the blood is valuable to understanding host-pathogen interactions
because of the potential to identify alterations associated with the immune response and to
gain insights into inflammation, among other potential insights (172). One study compared
gene expression in 39 COVID-19 inpatients admitted with community-acquired pneumonia
to that of control donors using whole-blood-cell transcriptomes (172). They also evaluated
the effect of mild versus severe disease. A greater number of differentially expressed genes
were found in severe patients compared to controls than in mild patients compared to con-
trols. They also identified that the transcriptional profiles clustered into five groups and that
the groups could not be explained by disease severity. Most severe cases fell into two clus-
ters associated with increased inflammation and granulocyte and neutrophil activation. The
presence of these clusters suggests the possibility that personalized medicine could be use-
ful in the treatment of COVID-19 (172). Longitudinal analysis of granulocytes from patients
with mild versus severe COVID-19 revealed that granulocyte activation-associated factors dif-
ferentiated the disease states, with greater numbers of differentially expressed genes early
in the disease course (172). This study therefore revealed distinct patterns associated with
COVID-19 and identified genes and pathways associated with each cluster.

Many other studies have also identified transcriptomic signatures associated with
the immune response and inflammation. Other studies have profiled the transcriptome
of BALF (174) and the nasopharynx (178). One study used single-cell transcriptomics
techniques to investigate cell types including brain and choroid plexus cells compared to
healthy controls and controls with influenza; among other signals of neuroinflammation,
this study reported cortical T cells only in COVID-19 patients (179). Transcriptomic analysis
can thus provide insight into the pathogenesis of SARS-CoV-2 and may also be useful in
identifying candidate therapeutics (172).

Proteomics. Proteomics analysis offers an opportunity to characterize the response
to a pathogen at a level above transcriptomics. Especially early on, this primarily involved eval-
uating the effect of the virus on cell lines. One early proteomics study investigated changes
associated with in vitro SARS-CoV-2 infection using Caco-2 cells (180). This study reported that
SARS-CoV-2 induced alterations in multiple vital physiological pathways, including translation,
splicing, carbon metabolism, and nucleic acid metabolism in the host cells. Another area of in-
terest is whether SARS-CoV-2 is likely to induce changes similar to those by other HCoVs. For
example, because of the high level of sequence homology between SARS-CoV-2 and SARS-
CoV-1, it has been hypothesized that sera from convalescent SARS-CoV-1 patients might
show some efficacy in cross-neutralizing SARS-CoV-2-S-driven entry (28). However, despite
the high level of sequence homology, certain protein structures might be immunologically
distinct, which would be likely to prohibit effective cross-neutralization across different SARS
species (181). Consequently, proteomic analyses of SARS-CoV-1 might also provide some
essential information regarding the new pathogen (182, 183).

Proteomics research has been able to get ahead of the timeline for development of
omics-level big data sets specific to SARS-CoV-2 by adopting a comparative bioinformatics
approach. Data hubs such as UniProt (184), NCBI Genome Database (185), The Immune
Epitope Database and Analysis Resource (186), and The Virus Pathogen Resource (187)

SARS-CoV-2 Viral Genome and Pathogenesis

September/October 2021 Volume 6 Issue 5 e00095-21 msystems.asm.org 11

https://msystems.asm.org


contain a wealth of data from studies in other viruses and even HCoVs. Such databases facili-
tate the systems-level reconstruction of protein-protein interaction networks, providing
opportunities to generate hypotheses about the mechanism of action of SARS-CoV-2 and
identify potential drug targets. In an initial study (188), 26 of the 29 SARS-CoV-2 proteins
were cloned and expressed in HEK293T kidney cells, allowing for the identification of 332
high-confidence human proteins interacting with them. Notably, this study suggested that
SARS-CoV-2 interacts with innate immunity pathways. Ranking pathogens by the similarity
between their interactomes and that of SARS-CoV-2 suggested West Nile virus, Mycobacterium
tuberculosis, and Human papillomavirus infections as the top three hits. The fact that the host-
pathogen interactome of the bacteriumMycobacterium tuberculosis was found to be similar to
that of SARS-CoV-2 suggests that changes related to lung pathology might comprise a signifi-
cant contributor to these expression profiles. Additionally, it was suggested that the envelope
protein, E, could disrupt host bromodomain-containing proteins, i.e., BRD2 and BRD4, which
bind to histones, and the spike protein could likely intervene in viral fusion by modulating the
GOLGA7-ZDHHC5 acyl-transferase complex to increase palmitoylation, which is a posttransla-
tional modification that affects how proteins interact with membranes (189).

An example of an application of this in silico approach comes from another study
(190), which used patient-derived peripheral blood mononuclear cells to identify 251
host proteins targeted by SARS-CoV-2. This study also reported that more than 200
host proteins were disrupted following infection. In particular, a network analysis
showed that nsp9 and nsp10 interacted with NF-kB-repressing factor, which encodes a
transcriptional repressor that mediates repression of genes responsive to nuclear factor
kappa-light-chain-enhancer of activated B cells. These genes are important to pro-, and
potentially also anti-, inflammatory signaling (191). This finding could explain the exac-
erbation of the immune response that shapes the pathology and the high cytokine lev-
els characteristic of COVID-19, possibly due to the chemotaxis of neutrophils mediated
by IL-8 and IL-6. Finally, it was suggested (192) that the E protein of both SARS-CoV-1
and SARS-CoV-2 has a conserved Bcl-2 homology 3-like motif, which could inhibit anti-
apoptosis proteins, e.g., BCL2, and trigger the apoptosis of T cells. Several compounds
are known to disrupt the host-pathogen protein interactome, largely through the inhi-
bition of host proteins. Therefore, this research identifies candidate targets for inter-
vention and suggests that drugs modulating protein-level interactions between virus
and host could be relevant to treating COVID-19.

As with other approaches, analyzing the patterns found in infected versus healthy
human subjects is also important. COVID-19 infection has been associated with quanti-
tative changes in transcripts, proteins, metabolites, and lipids in patient blood samples
(193). One longitudinal study (194) compared COVID-19 patients to symptomatic controls
who were PCR negative for SARS-CoV-2. The longitudinal nature of this study allowed it to
account for differences in the scale of inter- versus intraindividual changes. At the time of
first sampling, common functions of proteins upregulated in COVID-19 patients relative to
controls were related to immune system mediation, coagulation, lipid homeostasis, and pro-
tease inhibition. They compared these data to the patient-specific time points associated
with the highest levels of SARS-CoV-2 antibodies and found that the actin-binding protein
gelsolin, which is involved in recovery from disease, showed the steepest decline between
those two time points. Immunoglobulins comprised the only proteins that were significantly
different between the COVID-19 and control patients at both of these time points. The most
significantly downregulated proteins between these time points were related to inflamma-
tion, while the most significantly upregulated proteins were immunoglobulins. Proteins
related to coagulation also increased between the two time points. The selection of a symp-
tomatic control cohort rather than healthy comparisons also suggests that the results are
more likely to highlight the response to SARS-CoV-2 and COVID-19 specifically, rather than
to disease more broadly. This study also compared the disease course in patients who ulti-
mately survived to the course in those who died and found that ITIH4, a protein associated
with the inflammatory response to trauma, may be a biomarker useful to identify patients at
risk of death. Thus, these results indicate the value of studying patients in a longitudinal
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manner over the disease course. By revealing which genes are perturbed during SARS-CoV-
2 infection, proteomics-based analyses can thus provide novel insights into host-virus inter-
action and serve to generate new avenues of investigation for therapeutics.

VIRAL VIRULENCE

Like that of SARS-CoV-1, the entry of SARS-CoV-2 into host cells is mediated by
interactions between the viral spike glycoprotein, S, and human ACE2 (hACE2) (20, 28,
195–200). Differences in how the S proteins of the two viruses interact with hACE2
could partially account for the increased transmissibility of SARS-CoV-2. Studies have
reported conflicting binding constants for the S-hACE2 interaction, though they have
agreed that the SARS-CoV-2 S protein binds with equal affinity as, if not greater affinity
than, the SARS-CoV-1 S protein does (9, 20, 198). The C-terminal domain of the SARS-
CoV-2 S protein in particular was identified as the key region of the virus that interacts
with hACE2, and the crystal structure of the C-terminal domain of the SARS-CoV-2 S
protein in complex with hACE2 reveals stronger interaction and a higher affinity for receptor
binding than that of SARS-CoV-1 (199). Among the 14 key binding residues identified in the
SARS-CoV-1 S protein, eight are conserved in SARS-CoV-2, and the remaining six are semi-
conservatively substituted, potentially explaining variation in binding affinity (20, 198).
Studies of crystal structure have shown that the RBD of the SARS-CoV-2 S protein, like that
of other coronaviruses, undergoes stochastic hinge-like movement that flips it from a
“closed” conformation, in which key binding residues are hidden at the interface between
protomers, to an “open” one (9, 20). Spike proteins cleaved at the furin-like binding site are
substantially more likely to take an open conformation (66%) than those that are uncleaved
(17%) (201). Because the RBD plays such a critical role in viral entry, blocking its interaction
with ACE2 could represent a promising therapeutic approach. Nevertheless, despite the
high structural homology between the SARS-CoV-2 RBD and that of SARS-CoV-1, monoclo-
nal antibodies targeting SARS-CoV-1 RBD failed to bind to SARS-CoV-2-RBD (9). However, in
early research, sera from convalescent SARS patients were found to inhibit SARS-CoV-2 viral
entry in vitro, albeit with lower efficiency than it inhibited SARS-CoV-1 (28).

Comparative genomic analysis reveals that several regions of the coronavirus genome
are likely critical to virulence. The S1 domain of the spike protein, which contains the recep-
tor binding motif, evolves more rapidly than the S2 domain (18, 19). However, even within
the S1 domain, some regions are more conserved than others, with the receptors in S1’s N-
terminal domain (S1-NTD) evolving more rapidly than those in its C-terminal domain (S1-
CTD) (19). Both S1-NTD and S1-CTD are involved in receptor binding and can function as
RBDs to bind proteins and sugars (18), but RBDs in the S1-NTD typically bind to sugars, while
those in the S1-CTD recognize protein receptors (5). Viral receptors show higher affinity with
protein receptors than sugar receptors (5), which suggests that positive selection on or
relaxed conservation of the S1-NTD might reduce the risk of a deleterious mutation that
would prevent binding. The SARS-CoV-2 S protein also contains an RRAR furin recognition
site at the S1/S2 junction (9, 20), setting it apart from both bat coronavirus RaTG13, with
which it shares 96% genome sequence identity, and SARS-CoV-1 (202). Such furin cleavage
sites are commonly found in highly virulent influenza viruses (203, 204). The furin recogni-
tion site at the S1/S2 junction is likely to increase pathogenicity via destabilization of the
spike protein during fusion to ACE2 and the facilitation of cell-cell adhesion (9, 20, 37, 201,
203, 204). These factors may influence the virulence of SARS-CoV-2 relative to other beta
coronaviruses. Additionally, a major concern has been the emergence of SARS-CoV-2 var-
iants with increased virulence. The extent to which evolution within SARS-CoV-2 may affect
pathogenesis is reviewed below.

MOLECULAR SIGNATURES, TRANSMISSION, AND VARIANTS OF CONCERN

Genetic variation in SARS-CoV-2 has been used to elucidate patterns over time and
space. Many mutations are neutral in their effect and can be used to trace transmission
patterns. Such signatures within SARS-CoV-2 have provided insights during outbreak
investigations (205–207). Similar mutations observed in several patients may indicate
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that the patients belong to the same transmission group. The tracking of SARS-CoV-2
mutations is recognized as an essential tool for controlling future outbreaks and trac-
ing the path of the spread of SARS-CoV-2. In the first months of the pandemic in early
2020, early genomic surveillance efforts in Guangdong, China, revealed that local trans-
mission rates were low and that most cases arising in the province were imported
(208). Since then, efforts have varied widely among countries: for example, the United
Kingdom has coordinated a national database of viral genomes (209), but efforts to collect
this type of data in the United States have been more limited (210). Studies have applied
phylogenetic analyses of viral genomes to determine the source of local COVID-19 out-
breaks in Connecticut (USA) (211), the New York City area (USA) (212), and Iceland (213).
There has been an ongoing effort to collect SARS-CoV-2 genomes throughout the COVID-19
outbreak, and as of summer 2021, millions of genome sequences have been collected from
patients. The sequencing data can be found at GISAID (214), NCBI (215), and the COVID-19
data portal (216).

Ongoing evolution can be observed in genomic data collected through molecular
surveillance efforts. In some cases, mutations can produce functional changes that can
impact pathogenesis. One early example is the spike protein mutation D614G, which
appeared in March 2020 and became dominant worldwide by the end of May 2020
(217, 218). This variant was associated with increased infectivity and increased viral
load but not with more severe disease outcomes (217, 219). This increased virulence is
likely achieved by altering the conformation of the S1 domain to facilitate binding to
ACE2 (219). Similarly, the N439K mutation within the RBD of the spike protein is likely
associated with increased transmissibility and enhanced binding affinity for hACE2,
although it is also not thought to affect disease outcomes (220). In contrast, a mutation
in ORF8 that was identified in Singapore in the early months of 2020 was associated
with cases of COVID-19 that were less likely to require treatment with supplemental
oxygen (221), and a deletion surrounding the furin site insertion at the S1/S2 boundary
has been identified only rarely in clinical settings (222), suggesting that these muta-
tions may disadvantage viral pathogenesis in human hosts. Thus, mutations have been
associated with both virological and clinical differences in pathogenesis.

Several VOCs have also been identified and designated through molecular surveillance
efforts (223). The Alpha variant (lineage B.1.1.7) was first observed in the United Kingdom in
October 2020 before it quickly spread around the world (224). Other variants meriting fur-
ther investigation have also been identified, including the Beta variant (B.1.351 lineage) first
identified in South Africa and the Gamma variant (P.1 lineage) initially associated with out-
breaks in Brazil. These lineages share independently acquired mutations that may affect
pathogenicity (225–229). For example, they are all associated with a greater binding affinity
for hACE2 than that of the wild-type variant (227, 230, 231), but they were not found to
have more efficient cell entry than the wild-type virus (232). A fourth VOC, the Delta variant
(B.1.617.2 and AY.1, AY.2, and AY.3 lineages), was identified in India in late 2020 (233). Some
of the mutations associated with this lineage may alter fusogenicity and enhance furin cleav-
age, among other effects associated with increased pathogenicity (234). The changes in
these VOC demonstrate how ongoing evolution in SARS-CoV-2 can drive changes in how
the virus interacts with host cells.

QUANTIFYING VIRAL PRESENCE

Assessing whether a virus is present in a sample is a more complex task than it initially
seems. Many diagnostic tests rely on real-time PCR (RT-PCR) to test for the presence versus
absence of a virus (235). They may report the cycle threshold (CT) indicating the number of
doubling cycles required for the target (in this case, SARS-CoV-2) to become detectable. A
lower CT therefore corresponds to a higher viral load. The CT that corresponds to a positive
can vary widely but is often around 35. This information is sufficient to answer many ques-
tions, since an amplicon must be present in order to be duplicated in RT-PCR. For example,
if a patient is presenting with COVID-19 symptoms, a positive RT-PCR test can confirm the
diagnosis.
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However, RT-PCR analysis alone cannot provide the information needed to deter-
mine whether a virus is present at sufficient levels to be infectious (236). Some studies
have therefore taken the additional step of cultivating samples in vitro in order to
observe whether cells become infected with SARS-CoV-2. One study collected upper
respiratory tract samples from COVID-19 patients, analyzed them with RT-PCR to determine
the cycle threshold, and then attempted to cultivate the SARS-CoV-2 virus in VeroE6 cells
(236). This study found that out of 246 samples, fewer than half (103 samples) produced a
positive culture. Moreover, at a CT of 35, only 5 out of 60 samples grew in vitro. Therefore,
the RT-PCR-confirmed presence of SARS-CoV-2 in a sample does not necessarily indicate
that the virus is present at a high-enough concentration to grow and/or spread.

MECHANISMS OF TRANSMISSION

When a human host is infected with a virus and is contagious, person-to-person vi-
ral transmission can occur through several possible mechanisms. When a contagious
individual sneezes, coughs, or exhales, they produce respiratory droplets that can con-
tain a large number of viral particles (237). Viral particles can enter the body of a new
host when they then come in contact with the oral, nasal, eye, or other mucus mem-
branes (237). The primary terms typically used to discuss the transmission of viruses via
respiratory droplets are droplet, aerosol, and contact transmission (238). The distinc-
tion between droplet and aerosol transmission is typically anchored on whether a par-
ticle containing the virus is larger or smaller than 5mm (239, 240). Droplet transmission
typically refers to contact with large droplets that fall quickly to the ground at close
range, such as breathing in droplets produced by a sneeze (237, 239). Aerosol transmis-
sion typically refers to much smaller particles (less than 5 mm) produced by sneezing,
coughing, or exhaling (237, 238) that can remain suspended over a longer period of
time and potentially be moved by air currents (237). It is also possible that viral par-
ticles deposited on surfaces via large respiratory droplets could later be aerosolized
(237). The transmission of viral particles that have settled on a surface is typically
referred to as contact or fomite transmission (237, 241). Any respiratory droplets that
settle on a surface could contribute to fomite transmission (237). Droplet and contact
transmission are both well-accepted modes of transmission for many viruses associ-
ated with common human illnesses, including influenza virus and rhinovirus (237).

The extent to which aerosol transmission contributes to the spread of respiratory
viruses is more widely debated. In influenza A, for example, viral particles can be detected in
aerosols produced by infected individuals, but it is not clear to what extent these particles
drive the spread of influenza A virus infection (237, 238, 242–244). Regardless of its role in
the spread of influenza A, however, aerosol transmission likely played a role in outbreaks
such as the 1918 Spanish influenza (H1N1) and 2009 “swine flu” (pH1N1) (244). All three of
these mechanisms have been identified as possible contributors to the transmission of
HCoVs (237), including the highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV
(245, 246). Transmission of SARS-CoV-1 is thought to proceed primarily through droplet
transmission, but aerosol transmission is also considered possible (237, 247, 248), and fomite
transmission may have also played an important role in some outbreaks (249). Similarly, the
primary mechanism of MERS transmission is thought to be droplets because interindividual
transmission appears to be associated with close interpersonal contact (e.g., household or
health care settings), but aerosolized particles of the MERS virus have been reported to per-
sist much more robustly than influenza A virus under a range of environmental conditions
(250, 251). However, few of these analyses have sought to grow positive samples in culture
and thus to confirm their potential to infect new hosts.

Contact, droplet, and aerosol transmission are therefore all worth evaluating when
considering possible modes of transmission for a respiratory virus like SARS-CoV-2. The
stability of the SARS-CoV-2 virus both in aerosols and on a variety of surfaces was found to
be similar to that of SARS-CoV-1 (252). Droplet-based and contact transmission were initially
put forward as the greatest concern for the spread of SARS-CoV-2 (253), with droplet trans-
mission considered the dominant mechanism driving the spread of the virus (254) because
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the risk of fomite transmission under real-world conditions is likely to be substantially lower
than the conditions used for experimental analyses (255). The COVID-19 pandemic has, how-
ever, exposed significant discrepancies in how terms pertaining to airborne viral particles
are interpreted in different contexts (239). The 5-mm distinction between “droplets” and
“aerosols” is typical in the biological literature but is likely an artifact of historical science
rather than a meaningful boundary in biology or physics (240). Additionally, various ambient
conditions such as airflow can influence how particles of different sizes fall or spread (239).
Despite initial skepticism about airborne transmission of SARS-CoV-2 through small particles
(240), evidence now suggests that small particles can contribute to SARS-CoV-2 transmission
(252, 256–258). For example, one early study detected SARS-CoV-2 viral particles in air sam-
ples taken from hospitals treating COVID-19 patients, although the infectivity of these sam-
ples was not assessed (259). Subsequently, other studies have been successful in growing
SARS-CoV-2 in culture with samples taken from the air (260, 261) while others have not (262,
263) (see reference 264 for a systematic review of available findings as of July 2020). The fact
that viable SARS-CoV-2 may exist in aerosolized particles calls into question whether some
axioms of COVID-19 prevention, such as 2-m social distancing, are sufficient (240, 260, 265).

Symptoms and viral spread. Other aspects of pathogenesis are also important to
understanding how the virus spreads, especially the relationship between symptoms, vi-
ral shedding, and contagiousness. Symptoms associated with reported cases of COVID-
19 range from mild to severe (1), but some individuals who contract COVID-19 remain
asymptomatic throughout the duration of the illness (266). The incubation period, or the
time period between exposure and the onset of symptoms, has been estimated at 5 to 8
days, with means of 4.91 (95% confidence interval [CI], 4.35 to 5.69) and 7.54 (95% CI, 6.76
to 8.56) reported in two different Asian cities and a median of 5 (interquartile range [IQR], 1
to 6) reported in a small number of patients in a Beijing hospital (267, 268).

However, the exact relationship between contagiousness and viral shedding remains
unclear. Estimates suggest that viral shedding can, in some cases, begin as early as 12.3 days
(95% CI, 5.9 to 17.0) before the onset of symptoms, although this was found to be very rare,
with fewer than 0.1% of transmission events occurring 7 or more days before symptom
onset (269). Transmissibility appeared to peak around the onset of symptoms (95% CI,20.9
to 0.9 days), and only 44% (95% CI, 30 to 57%) of transmission events were estimated to
occur from presymptomatic contacts (269). A peak in viral load corresponding to the onset
of symptoms was also confirmed by another study (236). As these trends became apparent,
concerns arose due to the potential for individuals who did not yet show symptoms to
transmit the virus (270). Recovered individuals may also be able to transmit the virus after
their symptoms cease. A study of the communicable period based on 24 individuals who
tested positive for SARS-CoV-2 prior to or without developing symptoms estimated that
individuals may be contagious for 1 to 21 days, but the authors note that this estimate may
be low (266). In an early study, viral nucleic acids were reported to remain at observable lev-
els in the respiratory specimens of recovering hospitalized COVID-19 patients for a median
of 20 days and with a maximum observed duration through 37 days, when data collection
for the study ceased (78).

As more estimates of the duration of viral shedding were released, they converged
around approximately 3 weeks from first positive PCR test and/or onset of symptoms
(which, if present, are usually identified within 3 days of the initial PCR test). For exam-
ple, in some studies, viral shedding was reported for up to 28 days following symptom
onset (271) and for 1 to 24 days from first positive PCR test, with a median of 12 days
(67). On the other hand, almost 70% of patients were reported to still have symptoms
at the time that viral shedding ceased, although all symptoms reduced in prevalence
between onset and cessation of viral shedding (272). The median time that elapsed
between the onset of symptoms and cessation of viral RNA shedding was 23 days, and
that between first positive PCR test and cessation of viral shedding was 17 days (272).
The fact that this study reported symptom onset to predate the first positive PCR test
by an average of 3 days, however, suggests that there may be some methodological
differences between it and related studies. Furthermore, an analysis of residents of a
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nursing home with a known SARS-CoV-2 case measured similar viral loads in residents
who were asymptomatic regardless of whether they later developed symptoms, and
the load in the asymptomatic residents was comparable to that of residents who dis-
played either typical or atypical symptoms (273). Taken together, these results suggest
that the presence or absence of symptoms is not a reliable predictor of viral shedding
or of SARS-CoV-2 status (e.g., reference 274). However, it should be noted that viral
shedding is not necessarily a robust indicator of contagiousness. The risk of spreading
the infection was low after 10 days from the onset of symptoms, as viral load in spu-
tum was found to be unlikely to pose a significant risk based on efforts to culture sam-
ples in vitro (271). The relationship between symptoms, detectable levels of the virus,
and risk of viral spread is therefore complex.

The extent to which asymptomatic or presymptomatic individuals are able to transmit
SARS-CoV-2 has been a question of high scientific and community interest. Early reports
(February and March 2020) described transmission from presymptomatic SARS-CoV-2-posi-
tive individuals to close family contacts (275, 276). One of these reports (276) also included a
description of an individual who tested positive for SARS-CoV-2 but never developed symp-
toms. Later analyses also sought to estimate the proportion of infections that could be
traced back to a presymptomatic or asymptomatic individual (e.g., reference 277). Estimates
of the proportion of individuals with asymptomatic infections have varied widely. The pro-
portion of asymptomatic individuals on board the Diamond Princess cruise ship, which was
the site of an early COVID-19 outbreak, was estimated at 17.9% (278). In contrast, a model
using the prevalence of antibodies among residents of Wuhan, China, estimated a much
higher rate of asymptomatic cases, at approximately 7 in 8, or 87.5% (279). An analysis of
the populations of care homes in London found that, among the residents (median age 85
years), the rate of asymptomatic infection was 43.8%, and among the caretakers (median
age 47 years), the rate was 49.1% (280). The duration of viral shedding may also be longer in
individuals with asymptomatic cases of COVID-19 than in those who do show symptoms
(281). As a result, the potential for individuals who do not know they have COVID-19 to
spread the virus raises significant concerns. In Singapore and Tianjin, two cities studied to
estimate incubation period, an estimated 40 to 50% and 60 to 80% of cases, respectively,
were considered to be caused by contact with asymptomatic individuals (267). An analysis
of viral spread in the Italian town of Vo’, which was the site of an early COVID-19 outbreak,
revealed that 42.5% of cases were asymptomatic and that the rates were similar across age
groups (282). The argument was thus made that the town’s lockdown was imperative for con-
trolling the spread of COVID-19 because it isolated asymptomatic individuals. While more
models are likely to emerge to better explore the effect of asymptomatic individuals on SARS-
CoV-2 transmission, these results suggest that strategies for identifying and containing asymp-
tomatic but contagious individuals are important for managing community spread.

Estimating the fatality rate. Estimating the occurrence of asymptomatic and mild
COVID-19 cases is important to identifying the mortality rate associated with COVID-19. The
mortality rate of greatest interest would be the total number of fatalities as a fraction of the
total number of people infected. One commonly reported metric is the case fatality rate
(CFR), which compares the number of COVID-19-related deaths to the number of confirmed
or suspected cases. However, in locations without universal testing protocols, it is impossible
to identify all infected individuals because so many asymptomatic or mild cases go unde-
tected. Therefore, a more informative metric is the infection fatality rate (IFR), which com-
pares the known deaths to the estimated number of cases. It thus requires the same numer-
ator as CFR but divides by an approximation of the total number of cases rather than only
the observed/suspected cases. IFR varies regionally, with some locations observed to have
IFRs as low as 0.17% while others are as high as 1.7% (283). Estimates of CFR at the national
and continental level and IFR at the continent level are maintained by the Centre for
Evidence-Based Medicine (284). Several meta-analyses have also sought to estimate IFR at
the global scale. These estimates have varied; one peer-reviewed study aggregated data
from 24 other studies and estimated IFR at 0.68% (95% CI, 0.53% to 0.82%), but a preprint
that aggregated data from 139 countries calculated a global IFR of 1.04% (95% CI, 0.77% to
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1.38%) when false negatives were considered in the model (283, 285). A similar prevalence
estimate was identified through a repeated cross-sectional serosurvey conducted in New
York City that estimated the IFR as 0.97% (286). Examination of serosurvey-based estimates
of IFR identified convergence on a global IFR estimate of 0.60% (95% CI, 0.42% to 0.77%)
(283). All of these studies note that IFR varies widely by location, and it is also expected to
vary with demographic and health-related variables such as age, sex, prevalence of comor-
bidities, and access to health care and testing (287). Estimates of infection rates are becom-
ing more feasible as more data become available for modeling and will be bolstered as sero-
logical testing becomes more common and more widely available. However, this research
may be complicated due to the emergence of variants over time, as well as the varying
availability and acceptance of vaccines in different communities and locations.

DYNAMICS OF TRANSMISSION

Disease spread dynamics can be estimated using R0, the basic reproduction number, and
Rt, the effective reproduction number. Accurate estimates of both are crucial to understand-
ing the dynamics of infection and to predicting the effects of different interventions. R0 is
the average number of new (secondary) infections caused by one infected person, assuming
a wholly susceptible population (288), and is one of the most important epidemiological pa-
rameters (289). A simple mechanistic model used to describe infectious disease dynamics is
a susceptible-infected-recovered compartmental model (290, 291). In this model, individuals
move through three states: susceptible, infected, and recovered; two parameters, g and b ,
specify the rate at which the infectious recover and the infection transmission rate, respec-
tively, and R0 is estimated as the ratio of b and g (289, 292). A pathogen can invade a sus-
ceptible population only if R0 is.1 (289, 293). The spread of an infectious disease at a partic-
ular time t can be quantified by Rt, the effective reproduction number, which assumes that
part of the population has already recovered (and thus gained immunity to reinfection) or
that mitigating interventions have been put into place. For example, if only a fraction St of
the population is still susceptible, Rt = St � R0. When Rt is greater than 1, an epidemic grows
(i.e., the proportion of the population that is infectious increases); when Rt is less than 1, the
proportion of the population that is infectious decreases. R0 and Rt can be estimated directly
from epidemiological data or inferred using susceptible-infected-recovered-type models. To
capture the dynamics of SARS-CoV-2 accurately, the addition of a fourth compartment, i.e., a
susceptible-exposed-infectious-recovered model, may be appropriate because such models
account for the relative lengths of incubation and infectious periods (294).

Original estimates of R0 for COVID-19 lie in the range R0 = 1.4 to 6.5 (295–297).
Variation in R0 is expected between different populations, and the estimated values of
R0 discussed below are for specific populations in specific environments. The different
estimates of R0 should not necessarily be interpreted as a range of estimates of the
same underlying parameter. In one study of international cases, the predicted value
was R0 = 1.7 (298). In China (both Hubei province and nationwide), the value was predicted
to lie in the range R0 = 2.0 to 3.6 (295, 299, 300). Another estimate based on a cruise ship
where an outbreak occurred predicted R0 = 2.28 (301). Susceptible-exposed-infectious-recov-
ered model-derived estimates of R0 range from 2.0 to 6.5 in China (302–305) to R0 = 4.8 in
France (306). Using the same model as for the French population, a study estimated R0 = 2.6
in South Korea (306), which is consistent with other studies (307). From a meta-analysis of
studies estimating R0 (296), the median R0 was estimated to be 2.79 (IQR 1.16) based on 12
studies published between 1 January and 7 February 2020.

Inference of the effective reproduction number can provide insight into how populations
respond to an infection and the effectiveness of interventions. In China, Rt was predicted to lie
in the range of 1.6 to 2.6 in January 2020, before travel restrictions (308). Rt decreased from
2.35 1 week before travel restrictions were imposed (23 January 2020), to 1.05 1 week after.
Using their model, the authors also estimated the probability of new outbreaks occurring.
Assuming individual-level variation in transmission comparable to that of MERS or SARS, the
probability of a single individual exporting the virus and causing a large outbreak is 17 to
25%, and assuming variation like that of SARS and transmission patterns like those observed
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for COVID-19 in Wuhan, the probability of a large outbreak occurring after$4 infections exist
at a new location is greater than 50%. An independent study came to similar conclusions, find-
ing Rt = 2.38 in the 2-week period before January 23 with a decrease to Rt = 1.34 (using data
from January 24 to February 3) or Rt = 0.98 (using data from January 24 to February 8) (297).
In South Korea, Rt was inferred for February through March 2020 in two cities, Daegu (the cen-
ter of the outbreak) and Seoul (307). Metro data were also analyzed to estimate the effects of
social distancing measures. Rt decreased in Daegu from around 3 to ,1 over the period that
social distancing measures were introduced. In Seoul, Rt decreased slightly but remained close
to 1 (and larger than Rt in Daegu). These findings indicate that social distancing measures
appeared to be effective in containing the infection in Daegu, but in Seoul, Rt remained above
1, meaning secondary outbreaks remained possible. The study also shows the importance of
region-specific analysis: the large decline in caseload nationwide was mainly due to the
Daegu region and could mask persistence of the epidemic in other regions, such as Seoul and
Gyeonggi-do. In Iran, estimates of Rt declined from 4.86 in the 1st week to 2.1 by the 4th week
after the first cases were reported (309). In Europe, analysis of 11 countries inferred the dynam-
ics of Rt over a time range from the beginning of the outbreak until 28 March 2020, by which
point most countries had implementedmajor interventions (such as stay-at-home orders, pub-
lic gathering bans, and school closures) (310). Across all countries, the mean Rt before interven-
tions began was estimated as 3.87; Rt varied considerably, from below 3 in Norway to above
4.5 in Spain. After interventions, Rt decreased by an average of 64% across all countries, with
mean Rt = 1.43. The lowest predicted value was 0.97 for Norway, and the highest was 2.64 for
Sweden, which could be related to the fact that Sweden did not implement social distancing
measures on the same scale as other countries. The study concludes that while large changes
in Rt are observed, it is too early to tell whether the interventions put into place are sufficient
to decrease Rt below 1.

Evolution within SARS-CoV-2 has also driven changes in the estimated reproduction
number for different populations at different times. As of June 2021, the reproduction
number had increased globally relative to 2020, and increased transmissibility over the
wild-type variant was observed for the Alpha, Beta, Gamma, and Delta VOC (311). In the
United States. between December 2020 and January 2021, B.1.1.7 (Alpha) was estimated
to have an increased transmission of 35% to 45% relative to common SARS-CoV-2 variants
at the time, with B.1.1.7 being the dominant SARS-CoV-2 variant in some places at some
time points (312). This lineage was estimated to have increased transmissibility of 43% to
90% in the United Kingdom (313). An estimate of the reproduction number of B.1.1.7 in
the United Kingdom from September to December 2020 yielded 1.59 overall and between
1.56 and 1.95 in different regions of the country (229). The Delta variant is particularly
transmissible, and it has been estimated to be twice as transmissible as the wild-type vari-
ant of SARS-CoV-2 (311). A review of the literature describing the Delta variant identified a
mean estimated R0 of 5.08 (314). Such differences can affect fitness and therefore influence
the relative contributions of different lineages to a given viral gene pool over time (315).
Therefore, the evolution of the virus can result in shifts in the reproduction rate.

More generally, population-level epidemic dynamics can be both observed and modeled
(292). Data and empirically determined biological mechanisms inform models, while models
can be used to try to understand data and systems of interest or to make predictions about
possible future dynamics, such as the estimation of capacity needs (316) or the comparison
of predicted outcomes among prevention and control strategies (317, 318). Many current
efforts to model Rt have also led to tools that assist the visualization of estimates in real time
or over recent intervals (319, 320). These are valuable resources, yet it is also important to
note that the estimates arise frommodels containing many assumptions and are dependent
on the quality of the data they use, which varies widely by region.

CONCLUSIONS

The novel coronavirus SARS-CoV-2 is the third HCoV to emerge in the 21st century,
and research into previous HCoVs has provided a strong foundation for characterizing
the pathogenesis and transmission of SARS-CoV-2. Critical insights into how the virus
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interacts with human cells have been gained from previous research into HCoVs and
other viral infections. With the emergence of three devastating HCoVs over the past 20
years, emergent viruses are likely to represent an ongoing threat. Contextualizing
SARS-CoV-2 alongside other viruses not only serves to provide insights that can be im-
mediately useful for combating this virus itself but may also prove valuable in the face
of future viral threats.

Host-pathogen interactions provide a basis not only for understanding COVID-19
but also for developing a response. As with other HCoVs, the immune response to
SARS-CoV-2 is likely driven by detection of its spike protein, which allows it to enter
cells through ACE2. Epithelial cells have also emerged as the major cellular target of
the virus, contextualizing the respiratory and gastrointestinal symptoms that are fre-
quently observed in COVID-19. Many of the mechanisms that facilitate the pathogenesis of
SARS-CoV-2 are currently under consideration as possible targets for the treatment or preven-
tion of COVID-19 (10, 11). Research in other viruses also provides a foundation for understand-
ing the transmission of SARS-CoV-2 among people and can therefore inform efforts to control
the virus’s spread. Airborne forms of transmission (droplet and aerosol transmission) have
emerged as the primary modes by which the virus spreads to new hosts. Asymptomatic trans-
mission was also a concern in the SARS outbreak of 2002 to 2003 and, as in the current pan-
demic, presented challenges for estimating rates of infection (321). These insights are impor-
tant for developing a public health response, such as the CDC’s shift in its recommendations
surrounding masking (322).

Even with the background obtained from research in SARS and MERS, COVID-19 has
revealed itself to be a complex and difficult-to-characterize disease that has many possible
presentations that vary with age. Variability in presentation, including cases with no respira-
tory symptoms or with no symptoms altogether, was also reported during the SARS epi-
demic at the beginning of the 21st century (321). The variability of both which symptoms
present and their severity has presented challenges for public health agencies seeking to
provide clear recommendations regarding which symptoms indicate SARS-CoV-2 infection
and should prompt isolation. Asymptomatic cases add complexity to efforts to estimate sta-
tistics both such as R0 and Rt, which are critical to understanding the transmission of the vi-
rus, and IFR, which is an important component of understanding its impact on a given pop-
ulation. The development of diagnostic technologies over the course of the pandemic has
facilitated more accurate identification, including of asymptomatic cases (235). As more
cases have been diagnosed, the health conditions and patient characteristics associated
with more severe infection have also become more clear, although there are likely to be sig-
nificant sociocultural elements that also influence these outcomes (323). While many efforts
have focused on adults, and especially older adults because of the susceptibility of this de-
mographic, additional research is needed to understand the presentation of COVID-19 and
MIS-C in pediatric patients. As more information is uncovered about the pathogenesis of
HCoV and SARS-CoV-2 specifically, the diverse symptomatology of COVID-19 has and likely
will continue to conform with the ever-broadening understanding of how SARS-CoV-2 func-
tions within a human host.

While the SARS-CoV-2 virus is very similar to other HCoVs in several ways, including
in its genomic structure and the structure of the virus itself, there are also some differ-
ences that may account for differences in the COVID-19 pandemic compared to the
SARS and MERS epidemics of the past 2 decades. The R0 of SARS-CoV-2 has been esti-
mated to be similar to that of SARS-CoV-1 but much higher than that of MERS-CoV
(324), although a higher R0 has been estimated for some VOC. While the structures of
the viruses are very similar, evolution among these species may account for differences
in their transmissibility and virulence. For example, the acquisition of a furin cleavage
site at the S1/S2 boundary within the SARS-CoV-2 S protein may be associated with
increased virulence. Additionally, concerns have been raised about the accumulation
of mutations within the SARS-CoV-2 species itself, and whether these could influence
virulence (325). These novel variants may be resistant to vaccines and antibody treat-
ments such as bamlanivimab that were designed based on the wild-type spike protein
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(10, 326). As a consequence of reliance on targeting the SARS-CoV-2 spike protein for
many therapeutic and prophylactic strategies, increased surveillance is required to rap-
idly identify and prevent the spread of novel SARS-CoV-2 variants with alterations to
the spike protein. The coming of age of genomic technologies has made these types
of analyses feasible, and genomics research characterizing changes in SARS-CoV-2
along with temporal and spatial movement is likely to provide additional insights into
whether within-species evolution influences the effect of the virus on the human host.
Additionally, the rapid development of sequencing technologies over the past decade
has made it possible to rapidly characterize the host response to the virus. For exam-
ple, proteomics analysis of patient-derived cells revealed candidate genes whose regu-
lation is altered by SARS-CoV-2 infection, suggesting possible approaches for pharma-
ceutical invention and providing insight into which systems are likely to be disrupted
in COVID-19 (190). As more patient data become available, the biotechnological advan-
ces of the 2000s are expected to allow for more rapid identification of potential drug
targets than was feasible during the SARS, or even MERS, pandemic.

Thus, the COVID-19 crisis continues to evolve, but the insights acquired over the
past 20 years of HCoV research have provided a solid foundation for understanding
the SARS-CoV-2 virus and the disease it causes. As the scientific community continues
to respond to COVID-19 and to elucidate more of the relationships between pathoge-
nesis, transmission, host regulatory responses, and symptomatology, this understanding will
no doubt continue to evolve and to reveal additional connections among virology, pathoge-
nesis, and health. This review represents a collaboration between scientists from diverse
backgrounds to contextualize this virus at the union of many different biological disciplines
(327). At present, understanding the SARS-CoV-2 virus and its pathogenesis is critical to a
holistic understanding of the COVID-19 pandemic. In the future, interdisciplinary work on
SARS-CoV-2 and COVID-19 may guide a response to a new viral threat.
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